Jatropha curcas In Vitro Propagation

Camille M. González
University of Puerto Rico

Lauren M. Kong
Mills College
Jatropha curcas

- *Euphorbiaceae* (5m tall)
- Native to tropical areas
- Oil yielding seeds
- 50 year life-span
Benefits

- Drought Tolerant
- Can grow in poor soil conditions
- Non-food crop
- High oil yield
- Varied Uses

Challenges

- Cold Sensitive
Objectives

• Short Term:
 – Develop an efficient tissue culture protocol

• Long Term:
 – To develop an efficient transformation protocol
 – Activation of cold tolerance genes through genetic engineering
 – Wide-scale cultivation on temperate land
Materials and Methods

Jatropha Embryo Germination

✓ *Jatropha* NBM and MC seeds

- Seeds were sterilized (rinsing with sterile water between steps) utilizing:
 - Tween-20 and 10% Bleach
 - 0.1% Mercury Chloride

- Seeds were plated:
 - On JEG5 media
 - 10 embryos per plate
 - Incubated in light
Materials and Methods

✓ JCI: Hypocotyls & Cotyledons

• Hypocotyls and cotyledons were excised from 2 week old seedling
• These were plated:
 – JCI #1 Sucrose Media
 – From 5 cotyledons or 10 hypocotyls explants per plate
 – Incubated in dark
Materials and Methods

Jatropha Callus Induction

✓ JCI: New Growth Leaves

- Surface sterilized with:
 - Tween-20 and tap water
 - 70% Ethanol
 - 0.1% Mercury Chloride

• Leaves were plated:
 - On JCI media
 - From 5 to 10 leaf explants/plate
 - Incubated in dark
JCI Media

• JCI #1
 ✓ (MS Medium; 1.5mg/L BAP; 0.05mg/L IBA; 30g/L; sucrose/maltose; 7g/L agar)

• JCI #2
 ✓ (MS Medium; 1.0mg/L BAP; 0.05mg/L IBA; 8mg/L CuSO4; 100mg/L Casein; 200mg/L L-glutamine; 30g/L sucrose/maltose; 7g/L agar)

• JCI #3
 ✓ (MS Medium; 3mg/L BAP; 0.01mg/L IBA; 30g/L sucrose/maltose; 7g/L agar)

• JCI #5
 ✓ (MS Medium; 5mg/L BAP; 1mg/L; 30g/L sucrose/maltose; 7g/L agar)
Results

Embryo Germination (2 weeks)

Callus induction from leaf explant (8 weeks)

Callus induction form hypocotyl explant

Callus induction form cotyledon explant
Results

A) Comparison between JCI media varying in carbon source for new growth leaves

B) Comparison between hypocotyls and cotyledons with varying carbon and seed source
Summary

• Callus Induction:
 – 98% cotyledon and hypocotyl explants
 – Hypocotyl explants responded slightly better in sucrose medium

• For leaf explants callus formation:
 – JCI 5M 90% ★
 – JCI 5S 70%
 – JCI 2M 72.5% ★
 – JCI 2S 52%
Future Works

• Regeneration of *Jatropha curcas* from callus
• Optimization of transformation protocol to introduce cold-tolerance gene (*CBF3*)
• Regeneration of transgenic plants
Techniques Learned

• Media Making
• Sterile Technique
• Tissue Culture
 – Embryo Germination
 – Callus Induction
• *Agrobacterium* Transformation
• Particle Bombardment
Acknowledgments

• The National Science Foundation
• The Central Pennsylvania Laboratory for Biofuels
• The REU and High School students
• Ben Tabatabai and Alison Shuler
• Dr. Nilkamal Karelia and Dr. Kamal Chowdhury
• Dr. Sairam Rudrabhatla and Dr. Shobha Potlakayala
References

