Causality problems related to the numerical modeling of interconnects and connectors

Stefaan Sercu Samtec

Introduction

S-parameter models are widely used to model high speed interconnects and connectors

- Model accurately frequency dependent behavior (Skin effect, resonances, filter effects, ...)
- Easy to generate: NWA measurements, Full wave simulators
- Accurate simulations require high-quality S-parameters
 - Passive
 - Reciprocal
 - Causal
 - ...
- Practical considerations
 - Bandwidth limited
 - Tabulated: only known at discrete values

Causality

Causality is a simple, intuitive concept.

- Cause and effect
- There can be no response of a system before the system is excited.

Causality for continuous signals with an infinite bandwidth

samį́ec

Causality for continuous signals with infinite bandwidth

Time domain condition for causality

$$v(t) = 0$$
 $t < 0$

or

$$v_{even}(t) = sign(t).v_{odd}(t)$$
$$v_{odd}(t) = sign(t).v_{even}(t)$$

samį́ec

Causality for continuous signals with infinite bandwidth

Time domain condition for causality $v(t) \neq 0$ t < 0or $v_{even}(t) \neq sign(t).v_{odd}(t)$ $v_{odd}(t) \neq sign(t).v_{even}(t)$

Causality for continuous signals with infinite bandwidth

Time domain condition for causality

$$v(t) = 0$$
 $t < 0$

or

Frequency domain condition for causality

$$v_{even}(t) = sign(t).v_{odd}(t)$$

$$v_{odd}(t) = sign(t).v_{even}(t)$$
with FFT[sign(t)] = $\frac{2}{j2\pi f}$

$$V_{R}(f) = \frac{1}{\pi} P \int_{-\infty}^{+\infty} \frac{V_{I}(f')}{f - f'} df'$$

$$V_{I}(f) = -\frac{1}{\pi} P \int_{-\infty}^{+\infty} \frac{V_{R}(f')}{f - f'} df'$$

Fourier Transform

REAL and IMAGNINARY PART of the FREQUENCY DOMAIN REPRESENTATION OF THE SIGNAL are LINKED through the HILBERT TRANSFORM Causality for continuous functions with infinite bandwidth

Non-causality is shifted to positive time!

Causality for continuous functions with infinite bandwidth

Causality for discrete signals with a limited bandwidth

Causality for discrete bandwidth limited signals

Continuous, infinite bandwidth

Discrete bandwidth limited

- For discrete signals: time domain response = periodic response limited to one period T_0
- To avoid time domain leakage duration impulse response (T_{max}) < T_0

How to check for non-causalities

Causal or non-causal?

Causality for discrete bandwidth limited signals

Time domain condition for causality

$$v(t_k) = 0 - \frac{T_0}{2} < t_k < 0$$

- To avoid time domain leakage, duration time domain response $T_{max} < T_0$
- To be able to check causality, duration domain response $T_{max} < \frac{T_0}{2}$

Frequency domain: dual of Nyquist sampling theorem:

Causality for discrete bandwidth limited signals

Causality for discrete bandwidth limited signals

FREQUENCY DOMAIN CONDITION

Continuous, infinite bandwidth

 $V_{R}(f) = SIGN(f) * V_{I}(f)$ $V_{I}(f) = SIGN(f) * V_{I}(f)$

Discrete, bandwidth limited

$$V_{R}(f_{k}) = SIGN_{T_{0}}(f_{k}) \circledast V_{I}(f_{k})$$
$$V_{I}(f_{k}) = SIGN_{T_{0}}(f_{k}) \circledast V_{R}(f_{k})$$

CAUSALITY ENFORCEMENT

Calculation of time domain responses

sam(ec

Calculation time domain response

Causali bandw

Causality issues due to bandwidth limitation

Time domain convolution

Bandwidth limitation of an S-parameter model

→ Gibbs phenomenon

Frequency domain multiplication

Methods do not match perfectly!

Time domain sampling, when not done properly (Nyquist theorem) will introduce frequency domain leakage or aliasing

Bandwidth limitation causes ringing and loss of resolution

Sam

Bandwidth limitation causes ringing and loss of resolution

To reduce the ringing: need more bandwidth

To have more time points per bit: need more bandwidth

How much bandwidth is needed ?

Minimum N points per bit required:

$$F_{max} \ge \frac{N.Bitrate}{2}$$

sam

Bitrate [Gb/s]	Bit time [ps]	N	∆t [ps]	Fmax [GHz]
10	100	4	25.00	20
10	100	10	10.00	50
10	100	20	5.00	100
10	100	50	2.00	250
10	100	100	1.00	500
25	40	4	10.00	50
25	40	10	4.00	125
25	40	20	2.00	250
25	40	50	0.80	625
25	40	100	0.40	1250

Up to which frequency is actual data required? When can I apply zero-padding?

Notice: Main part of ringing in causal part of pulse response!

Perfect channel defines upper limit for bandwidth.

Maximum model frequency F_{max} drops significantly if channel is lossy.

Maximum model frequency F_{max} drops further.

Techniques to minimize ringing

Discrete Fourier Transform vs Fourier Transform

Impulse response

Pulse response

Bandwidth = 20 GHz

$$S_{2,1}^{\text{new}}(f) = S_{2,1}(f).e^{-j\omega\tau}$$
 $\tau = \alpha \Delta t$

25

 $0 \le \alpha < 1$

30

Pulse response

Techniques to reduce ringing - increase resolution

Extrapolation to 100 GHz

Techniques to reduce ringing - increase resolution

Techniques to reduce ringing - increase resolution

 Δ Pulse response = Infinite bandwidth – extrapolated signal

Causality issues due to discretization

Continuous, infinite bandwidth

sam(ec

Continuous, infinite bandwidth

Step response

Calculation step response: example

Calculation step response: example

Calculation step response: example

samţec

Impact on DC value when causality is enforced

DC value and causality enforcement

DC-value changes if causality is enforced and $\int impulse response(t) dt \neq 0$

Measurement of connector and footprint: impedance is not-causal

DC value and causality enforcement

Step 1) Reduce ringing: make signal continuous at F_0 :

Step 2) Enforce causality

DC value and causality enforcement

DC value and causality enforcement

