SIGNAL INTEGRITY: PCB & INTERCONNECT TEST "FOCUS ON DEEMBEDDING"

Eric Oseassen – Application Engineer 4/16/2020 eric.oseassen@rsa.rohde-schwarz.com

ROHDE&SCHWARZ

Make ideas real

PART 1: PCB AND INTERCONNECT TEST CHALLENGES

- CHANNEL IMPAIRMENTS
- SURVEY OF BANDWIDTH REQUIREMENTS

PART 2: DEEMBEDDING - HIGH-SPEED DIGITAL AND RF APPLICATIONS

- BRIEF OVERVIEW OF SCATTERING PARAMETERS
- DEEMBEDDING TYPES

PART 3: DEEMBEDDING: COMMON USE CASES

- FIVE TYPES OF DEEMBEDDING
- EZD (EAZY DEEMBEDDING) (K210) IMPLEMENTATION AND RESULTS

PART 4: PCB AND INTERCONNECT: SIGNAL INTEGRITY TESTS

- MODEL CHANNEL IMPAIRMENT WITH CORRECTED DATA
- SUMMARY & CONCLUSION

PART1 - PCB AND INTERCONNECT TEST CHALLENGES

HIGH-SPEED DIGITAL DESIGN: TX – CHANNEL – RX

CHALLENGES FOR PCBS AND INTERCONNECTS IN HIGH-SPEED DIGITAL DESIGNS

 impedance mismatches - discontinuities at packages, vias, connectors

Source: PCI-SIG Developers Conference 2019; PCIe®5.0 Electrical Update

CHALLENGES FOR PCBS AND INTERCONNECTS IN HIGH-SPEED DIGITAL DESIGNS

- impedance mismatches discontinuities at packages, vias, connectors, interposers
- losses and frequency response of PCB material
 - for 112 Gbps and above:
 PCB signal traces will be by-passed by cables
- crosstalk: NEXT, FEXT

CHALLENGES FOR PCBS AND INTERCONNECTS IN HIGH-SPEED DIGITAL DESIGNS

- Physical Structures
 - impedance mismatches discontinuities at packages, VIA's, connectors
 - losses and frequency response of PCB material
 - crosstalk: NEXT, FEXT
 - multiple resonant structures, e.g. via stubs (backdrill), fiber weave effects, etc.
 - Manufacturing Issues

HIGH-SPEED DIGITAL DESIGN: PCIE **NETWORK INFRASTRUCTURE, DATA CENTERS, ...**

PCIe Spec.	Raw Bandwidth (per Lane)	Data Rate (Total)	NRZ / PAM	VNA BW requirement SOC test	VNA BW requirement (PCBs, Interconnects)
Gen 3	8.0Gbps	8.0GT/s	NRZ		
Gen 4	16.0Gbps	16.0GT/s	NRZ	25GHz	20GHz (system performance)
Gen 5	32.0Gbps	32.0GT/s	NRZ	50GHz	40GHz (system performance)
Gen 6	64.0Gbps	64.0GT/s	PAM4	50GHz (spec. in progress)	40GHz (spec. in progress)

Note:

- GT/s = Gtransfers / sec
- Gbps = Gbit / sec

HIGH-SPEED DIGITAL DESIGN: IEEE802.3 NETWORK INFRASTRUCTURE, DATA CENTERS, ...

IEEE Spec.	Copper Cables	Backplanes	Signalling Bandwidth (per Lane)	NRZ / PAM	VNA BW requirement (PCBs, Interconnects)
802.3by 802.3bj	25GBASE-CR 100GBASE-CR4	25GBASE-KR 100GBASE-KR4	25Gbps	NRZ	25GHz
802.3cd	50GBASE-CR1 100GBASE-CR2 200GBASE-CR4	50GBASE-KR1 100GBASE-KR2 200GBASE-KR4	50Gbps	PAM4	26.56GHz
802.3ck	100GBASE-CR1 200GBASE-CR2 400GBASE-CR4	100GBASE-KR1 200GBASE-KR2 400GBASE-KR4	100Gbps	PAM4	50GHz (spec. in progress)

PART 2: DEEMBEDDING: HIGH-SPEED DIGITAL AND RF APPLCATIONS

TYPICAL PCB MEASUREMENTS IN DIGITAL SYSTEMS S-PARAMETER BASICS

Principle:

1.) The VNA measures a differential 2-port device as single-ended 4-port device

TYPICAL PCB MEASUREMENTS IN DIGITAL SYSTEMS S-PARAMETER BASICS

Principle:

2.) The VNA calculates mixed mode S-Parameters out of measured single ended S-Parameters

EXPLORE DE-EMBEDDING

13 Rohde & Schwarz 20.04.2021 Signal Integrity: PCB and Interconnect Test

FOUR TIERS OF DE-EMBEDDING

PORT EXTENSION (PORT OFFSET)

- Assume text fixture is perfectly matched and behaves like a ideal transmission line
 - Defined delay
 - Defined loss
- Delay and loss can be
 - Manually entered by the user
 - Automatically determined
- Standard feature on most VNAs
- Easy configuration, but limited accuracy
 - Real world effects such as reflections, crosstalk, etc. are not well represented

DIRECT COMPENSATION

- Doesn't assume that the fixture behaves like ideal transmission line
- Measures frequency dependent transmission characteristics of fixture
 - Fixture terminated with open, short, or both
 - Best results when open and short are used
- Like port extension, only works well at lower frequencies (several GHz and below)
- Enforces Passivity
- ► Displays a "DOT" on Smith Chart

FIXTURE CALIBRATION

- ► Directly characterize the fixture
- ► Full calibration at DUT connection point
 - Moves the calibration plane to the DUT
 - "Calibrate out" the fixture
- More accurate solution
- Requires characterized calibration standards
 - Usually quite difficult to implement

TRL (THROUGH, REFLECT, LINE)

- ► Directly characterize the fixture
- ► Full calibration at DUT connection point
 - Moves the calibration plane to the DUT
 - "Calibrate out" the fixture
- More accurate solution
- Requires characterized calibration standards
 - Challenging to implement well

ALGORITHMIC BASED DE-EMBEDDING

- ► Directly characterize the fixture
- ► Full calibration at DUT connection point
 - Moves the calibration plane to the DUT
 - "Calibrate out" the fixture
- More accurate solution
- Requires defined calibration standard
 - Less difficult to implement

PART 3: DEEMBEDDING: COMMON USE CASES

USE CASE #1: RF DEVICES WITHOUT COAXIAL CONNECTORS CHARACTERIZATION + MEASUREMENT WITH VNA

Lead-in / lead-out characterization with VNA:

- step 1: calibration with coaxial standards $(\rightarrow \text{ calibration plane})$
- step 2: characterization and deembedding
 - of lead-in and lead-out
 - $(\rightarrow$ reference plane at DUT)

all VNA measurements at new reference plane

USE CASE #2: SOC INTERFACE TEST W. DEEMBEDDING CHARACTERIZATION WITH VNA, MEASUREMENT WITH SCOPE

Lead-in / lead-out characterization with VNA:

- step 1: calibration with coaxial standards
 - $(\rightarrow \text{ calibration plane})$
- step 2: characterization of lead-in and extrapolation to DC
- step 3: import to oscilloscope for deembedding
 - $(\rightarrow$ reference plane at ball)

all scope measurements at new measurement plane (ball of SoC: System on Chip)

USE CASE #3: CABLE TEST WITH DEEMBEDDING CHARACTERIZATION + MEASUREMENT WITH VNA

Lead-in / lead-out characterization with VNA:

- step 1: calibration with coaxial standards $(\rightarrow$ calibration plane)
- step 2: characterization and deembedding
 - of lead-in and lead-out
 - $(\rightarrow$ reference plane at cable)

all VNA measurements at new reference plane

USE CASE #4: PCB TEST WITH DEEMBEDDING CHARACTERIZATION + MEASUREMENT WITH VNA

USE CASE #5: CONNECTOR TEST WITH DEEMBEDDING CHARACTERIZATION + MEASUREMENT WITH VNA

DEEMBEDDING OF LEAD-IN / LEAD-OUT TRACES

Deembedding Method Integrated into R&S ZNA / R&S ZNB:

► EZD: Eazy Deembedding (ZNx-K210)

Deembedding Coupons:

► 2x Thru standard

26 Rohde & Schwarz 20.04.2021 Signal Integrity: PCB and Interconnect Test

LAB IMPLEMENTATION

"ZNx-K210"

RESULTS OF EZD

27 Rohde & Schwarz 20.04.2021 Signal Integrity: PCB and Interconnect Test

MEASUREMENT OF PCIE GEN5 SMT - HYPERION BOARD

GENERAL REQUIREMENT: DEEMBEDDING OF LEAD-IN / LEAD-OUT TRACES

Implementation in R&S ZNA, R&S ZNB / ZNBT:

1: Load or measure 2 x Thru 2: Measure DUT + Test Fixture 3: Run Tool

- Single Ended Ports Measure Coupon		Measure DUT + Test F	ixture	Save Fixture Mode			×
Coupon Type	Sym 2x Thru 🔻		-				
Load File	or Measure	Load File	Measure				
	△ Active	#	△ Active	# △	Apply	Display	
🗿 Part T		> Port 1		> S Port I			
Port 2		Port 2		Port 2	~		
Port 3		Port 3		Port 3			
Port 4		Port 4	✓	Port 4	•		
Select Ports & Connec	t Coupon to VNA	Select Ports & Conne	ect DUT to VNA	Run Fixture Mode	ling Tool		
Select Ports & Conner	et Coupon to VNA	Select Ports & Conne	ect DUT to VNA	Run Fixture Mode			
	\mathbf{i}		DUT		DUT		
nced Settings	Timestamp Supp Filenames Warr	ress Remeasure Reset to De	efault		Apply	X Cancel ?	Help

BEFORE & AFTER EZD DE-EMBEDDING

PCIe Gen5 SMT with Hyperion Board

- More than 3dB of insertion loss is recovered using the EZD tool
- Return Loss is "tamed" with the high frequency magnitude ripple mitigated.

PART 4: PCB AND INTERCONNECT: SIGNAL INTEGRITY TESTS

TYPICAL PCB MEASUREMENTS IN DIGITAL SYSTEMS EXAMPLE: EYE DIAGRAM

Measured DUT RF Channel

Simulated Ideal PRBS15 signal

Equalised Eye response

Add Amplitude Noise

Output Eye response from DUT

32 Rohde & Schwarz 20.04.2021 Signal Integrity: PCB and Interconnect Test

TYPICAL PCB MEASUREMENTS IN DIGITAL SYSTEMS EYE DIAGRAM

Define pass/fail areas to ensure a proper eye opening

33 Rohde & Schwarz 20.04.2021 Signal Integrity: PCB and Interconnect Test

SUMMARY

Frequency Domain VNA:

- ► return loss, insertion loss
- mode conversion
- ► crosstalk: NEXT, FEXT
- derived values, e.g.: COM / ERL Channel Operating Margin Effective Return Loss
- De-Embed Lead-In and Lead-Out Structures
- Model Channel Impairments
 - Convolve Serial Data with Frequency Domain Data

✤ A TECHNIQUE WAS DESCRIBED WHICH UTILIZES A VNA AND THE EZD (P370) UTILITY TO REMOVE OR DEEMBED THE EFFECTS OF FIXTURES UPON A DATA CHANNEL

- ✤ THIS TECHNIQUE REQUIRES ONLY A 2X THRU
- SUBSEQUENTLY, CHANNEL MODELING CAN BE EXPLORED USING TRUE DUT BEHAVIOR