

Genetic Transformation of Simarouba glauca

Rafiyat Adeyiga Cheyney University of Pennsylvania Major: Chemistry

Explant Collection

NSF-REU Experience

Chemistry lab

- Synthesis of styrene oxide
- Chiral heteroscorpionate
- * DPMPZM
- * Biofuels
 - * Techniques learnt during Summer 2011
 - a. Agrobacterium-mediated transformation
 - b. Particle bombardment (biolistic transformation)
 - c. Stereomicroscopy
 - d. Tissue culture /Sterile technique

General features of Simarouba glauca

- Simarouba glauca is commonly known as paradise tree which belongs to a family Simaroubaceae. Its native to Central America and Florida.
- This evergreen tree grows to a height of 12-15m
- Flowers are bisexual inconspicuous
- * Pre-bearing period is 6-8years.
- * The ripe fruits are eaten by birds and play an important role in seed dispersal.
- Indigenous tribes in Central America use the bark for fevers, malaria, dysentery and as a haemostatic agent to stop bleeding and as a tonic.
- * Simarouba glauca contains glaucarubin having antiamoebic property.

Background

- Simarouba glauca has a long history in herbal medicine in many countries.
- Simarouba glauca is also known for its pharmcology properties such as haemostatic, antihelmenthic, antiparasitic, antidysentric and anticancerous.
- * Simarouba glauca seed contains 60-70% oil.
- * **Simarouba glauca** is indigenous to southern Florida, the West Indies and Brazil.
- * Each well-grown tree can yield 15 to 30 Kg nutlets.
- * Simarouba can yield 1000-2000 Kg oil/hectare/year.
- * Can yield 1000-2000 Kg oilcake that can be used as a biofertilizer, and feedstock.

Objective

- Optimization of genetic transformation in Simarouba via biolistic and Agrobacteriummediated transformation.
 - The transformation could lead to transgenic
 Simarouba with enhanced abiotic stress
 tolerance, especially cold tolerance.

Transformation Protocol

* Protocol 1:

Sterilize explants with 70% EtOH and 0.1% HgCl₂

- Submerge explants in Agrobacterium for 20 minutes, then blot dry and place in co-cultivation medium in dark at 25°C for 3 days.
- Place 2-3 GUS-putative transformed explants in GUS solution for 24 hours
- Wash rest of explants with liquid MS w/ vitamins + 500 mg/L
 Cefotaxime and place in callus induction medium 1
- Protocol 2: Transformation of Simarouba: Scraped
 - * Everything as protocol 1 except the leaf explants were scraped to remove waxy cuticle.
- Protocol 3: Transformation with Plasmolysis Treatment
 - Everything as Protocol 1 except the leaf explants were plated in abaxial and adaxial position on plasmolysis medium for 4hrs
- * Protocol 4: Transformation of Simarouba: Vacuum Treatment
 - Everything as Protocol 1 except it was placed in desiccator for 20min while keeping the explants in Agrobacterium solution.
- Protocol 5: Particle Bombardment of Simarouba

Preliminary Results-3weeks

Transformation of *Simarouba* leaves with no changes to the protocol.

Conclusion: no GFP expression

Protocol 2

Scraped wax off leaf surface

Positive GFP expression in leaf explants

Biolistic Transformation

Particle Bombardment of Simarouba using gene gun

The transformation was negative and no GUS expression was observed

Plasmolysis(High sucrose and Maltose)

Scraped

Not scraped

Vacuum

Scraped

Not Scraped

Summary

Preliminary results

- Agrobacterium-mediated more efficient than particle bombardment
- Scraping wax off leaves and plasmolysis lead to GFP expression
- Best GFP expression in vacuum with scraped leaves

Future work

Efficient regeneration protocol being optimized

*Generate transgenic Simarouba resistant to abiotic stress(cold, drought, salinity, etc.) using the optimized transformation protocol.

* Potential gene of interest: CBF3

Acknowledgment

- * The author would like to thank National Science Foundation-Research Experiences for Undergraduates(NSF-REU), Dr. Sairam Rudrabhatla, Dr. Puthiyaparambil Josekutty, Benham Tabatabai and everyone at the Biofuels Laboratory at Penn State Harrisburg.
- Dr. Steven Hughes and Dr. N.Karelia for supporting my application

Manasi, P. S., & Gaikwad, D. K. (2011, April 1). A Critical Review on Medicinally Important Oil Yielding Plant Laxmitaru (Simarouba Glauca DC.). *Pharmaceutical Sciences and Research*, 3(4), 1195-1213.

