PCB Effects for Power Integrity

Bruce Archambeault, PhD

IEEE Fellow, MST Adjunct Professor IBM Distinguished Engineer Emeritus Bruce.arch@ieee.org

PCB Issues for Optimum Power Integrity

- Inductance dominates performance
 - Which inductance? Under what circumstances?
- Effect of capacitance value
- Effect of number of capacitors
- Effect of capacitor density
- Effect of capacitor via configuration
- Case Study

Design Geometry, Current Path, and Z_{PDN}

Model for Plane Recharge Investigations

4

Charge Between Planes vs.. Charge Drawn by IC

Board total charge : $C^*V = 3.5nF^*3.3V = 11nC$

Pulse charge 5A peak : $I^{t/2} = (1ns^{5A})/2=2.5nC$

Triangular pulses (5 Amps Peak)

6

Charge Depletion vs. Capacitor Distance

7

Charge Depletion for Capacitor @ 400 mils for Various connection Inductance

Effect of Multiple Capacitors While Keeping Total Capacitance Constant

The decap locations are 800mils from the power pin

• C=1uF

• ESL=0.5nH

• ESR=1 Ω

(power-ground pins at IC center)

Effect of Multiple Capacitors While Keeping Total Capacitance Constant

The decap locations are 800mils from the power pin

• C=0.5uF

• ESR=1 Ω

• ESL=0.5nH

(power-ground pins at IC center)

Effect of Multiple Capacitors While Keeping Total Capacitance Constant

The decap locations are 800mils from the power pin

(power-ground pins at IC center)

- C=0.25uF
- ESL=0.5nH
- ESR=1 Ω

Constant Capacitance 800 mil Distance

Constant Capacitance 800 mil Distance

Effect of Capacitor Value??

Need enough charge to supply need

Depends on connection inductance

Noise Voltage is INDEPENDENT of Amount of Capacitance!

What Happens if a 2nd Decoupling Capacitor is placed near the First Capacitor?

Second Via Around a circle

$$\frac{\mu d}{4\pi} \ln \left(\frac{(R+r)^2 (d_1+r)^2}{r^3 (d_2+r)} \right) - \frac{\mu d}{4\pi} \frac{\ln^2 \left(\frac{d_1+r}{R+r} \right)}{\ln \left(\frac{d_2+r}{r} \right)}$$

$$=\frac{\mu d}{4\pi}\ln\left(\frac{(R+r)^4}{(2R\sin(\theta/2)+r)r^3}\right)$$

R: distance between Port 1 and Port 2 in mil

r: radius for all ports in mil

d: thickness of dielectric layer in mil d1: distance between Port 3 and Port 1 in mil d2: distance between Port 2 and Port 3 in mil theta: angle as shown in the figure in degree

> Courtesy of Jingook Kim, Jun Fan, Jim Drewniak

Missouri University of Science and Technology

Effective Inductance for Various Distances to Decoupling Capacitor With Second Capacitor (Via) Equal Distance Around Circle Plane Seperation = 35 mil -- Via Diameter = 20 mil

18

Plane Seperation = 10 mil -- Via Diameter = 20 mil
 Hunch
 John

 250
 200
— 500mil 250 mil — 750 mil Angle (degrees)

Effective Inductance for Various Distances to Decoupling Capacitor With Second Capacitor (Via) Equal Distance Around Circle

Second Via Along Side

$$d_1 = \sqrt{R^2 + d_2^2}$$

R: distance between Port 1 and Port 2 in mil *r*: radius for all ports in mil *d*: thickness of dielectric layer in mil *d1*: distance between Port 3 and Port 1 in mil *d2*: distance between Port 2 and Port 3 in mil

Effective Inductance for Various Distances to Decoupling Capacitor With Second Capacitor (Via) Positioned Adjacent to First Capacitor Plane Seperation = 35 mil -- Via Diameter = 20 mil

Understanding Inductance Effects and Proximity

Current Density

23

[m]

[m]

DUT for Experimental Validation (Single Plane pair)

Experimental Validation (Single Plane Pair)

- Even in the case with two shorting vias at opposite sides (θ=180°), the inductance value is 68.8% of that with one shorting via
- As two shorting vias get closer together, mutual inductance between two shorting vias increases.

 μd_{\ln} $\frac{(R+r)^4}{(2R\sin(\theta/2)+r)r^3}$ Equation

Multiple Capacitors

Via Spacing

Distance to Planes (mils)	40 mil Spacing (nH)	0402 SMT (nH)	0603 SMT (nH)
10	0.3	0.9	1.1
20	0.5	1.3	1.6
30	0.75	1.6	1.9
40	0.95	1.9	2.2

Possible Configurations

Observations

- Added via (capacitor) does not lower effective inductance to 70-75% of original single via case
- Thicker dielectric results in higher inductance
- Alternating PWR/GND can significantly reduce overall inductance

Effect of Plane width on Inductance

Inductance as a Function of Plane Width

Plane Width	Inductance	
(inches)	(pH)	
10	545	
5	709	
2	1352	
1	2574	

Inductance as a Function of Plane Width

Plane Width (inches)	Inductance (pH) (Distance=10")	Inductance (pH) (Distance=2")	Inductance (pH) (Distance=1")
10	545	173	154
5	709	178	156
2	1352	355	163
1	2574	658	240

Plane Width & Current Density

The closest ground plane from the power plane, is most important. Other Ground planes in the stack up will not affect the L_{low} or L_{high} significantly.

Power Integrity Analysis Summary

- Physical cause of inductance (current path) identified for each portion of overall path
- Value of capacitance not as important as number of capacitors
- Via connection configuration can dramatically influence inductance
- If power/Ground-reference planes deep in PCB stackup, capacitor placement has less impact than might be expected

Design Conclusions

- PWR/GND plane pair close to IC minimizes L_{IC}
- Capacitors close to the power layer minimize the inductance L_{decap} from the capacitor to the power plane.
- PWR/GND plane separation small
- Placing Caps under the IC can benefit the design, if board is thin, or the plane inductance is large.
- Ground plane closest to the power layer affects the response most, all other ground layer have very little influence.
- Ground vias for power return currents placed adjacent to the ground terminal of the capacitors reduces the inductance in the current return path