

## Jatropha curcas

- Euphorbiaceae (5m tall)
- Native to tropical areas
- Oil yielding seeds
- 50 year life-span











## Benefits

- Drought Tolerant
- Can grow in poor soil conditions
- Non-food crop
- High oil yield
- Varied Uses

# Challenges

Cold Sensitive





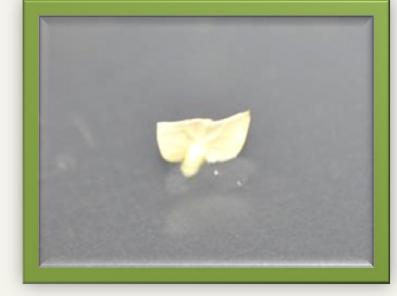




# Objectives

- Short Term:
  - Develop an efficient tissue culture protocol

- Long Term:
  - To develop an efficient transformation protocol
  - Activation of cold tolerance genes through genetic engineering
  - Wide-scale cultivation on temperate land






#### Materials and Methods

#### Jatropha Embryo Germination

- √ Jatropha NBM and MC seeds
- Seeds were sterilized (rinsing with sterile water between steps) utilizing:
  - Tween-20 and 10% Bleach
  - 0.1% Mercury Chloride
- Seeds were plated:
  - On JEG5 media
  - 10 embryos per plate
  - Incubated in light



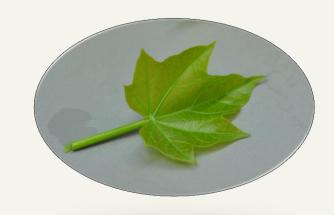




#### Materials and Methods

#### ✓ JCI: Hypocotyls & Cotyledons


- Hypocotyls and cotyledons were excised from 2 week old seedling
- These were plated:
  - JCI #1 Sucrose Media
  - From 5 cotyledons or 10 hypocotyls explants per plate
  - Incubated in dark




### Materials and Methods

#### Jatropha Callus Induction

- ✓ JCI: New Growth Leaves
- Surface sterilized with:
  - Tween-20 and tap water
  - 70% Ethanol
  - 0.1% Mercury Chloride





- •Leaves were plated:
  - -On JCI media
  - -From 5 to 10 leaf explants/plate
  - -Incubated in dark





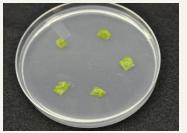


### JCI Media

- JCI #1
  - √ (MS Medium; 1.5mg/L BAP; 0.05mg/L IBA; 30g/L; sucrose/maltose; 7g/L agar)
- JCI #2
  - ✓ (MS Medium; 1.0mg/L BAP; 0.05mg/L IBA; 8mg/L CuSO4; 100mg/L Casein; 200mg/L L-glutamine; 30g/L sucrose/maltose; 7g/L agar)
- JCI #3
  - √ (MS Medium; 3mg/L BAP; 0.01mg/L IBA; 30g/L sucrose/maltose; 7g/L agar)
- JCI #5
  - ✓ (MS Medium; 5mg/L BAP; 1mg/L; 30g/L sucrose/maltose; 7g/L agar)






## Results



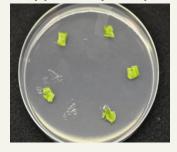




Embryo Germination (2 weeks)








Callus induction from leaf explant (8 weeks)





Callus induction form hypocotyl explant



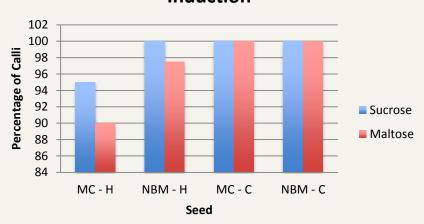


Callus induction form cotyledon explant








## Results

### Callus Induction by Media Varying in Carbon Source



A) Comparison between JCI media varying in carbon source for new growth leaves

### Hypocotyl and Cotyledon Callus Induction



B) Comparison between hypocotyls and cotyledons with varying carbon and seed source







# Summary

- Callus Induction:
  - 98% cotyledon and hypocotyl explants
  - Hypocotyl explants responded slightly better in sucrose medium
- For leaf explants callus formation:
  - JCI 5M 90% ★
  - JCI 5S 70%
  - JCI 2M 72.5% ★
  - JCI 2S 52%





### **Future Works**

- Regeneration of Jatropha curcas from callus
- Optimization of transformation protocol to introduce cold-tolerance gene (CBF3)
- Regeneration of transgenic plants






# Techniques Learned

- Media Making
- Sterile Technique
- Tissue Culture
  - Embryo Germination
  - Callus Induction
- Agrobacterium Transformation
- Particle Bombardment









# Acknowledgments

- The National Science Foundation
- The Central Pennsylvania Laboratory for Biofuels
- The REU and High School students
- Ben Tabatabai and Alison Shuler
- Dr. Nilkamal Karelia and Dr. Kamal Chowdhury
- Dr. Sairam Rudrabhatla and Dr. Shobha Potlakayala







## References

- Gubitz G.M., Mittelbach M., Trabi M. (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. *Biosure Technology; 67: 73-82.*
- Jones, N., Miller, J. H., (1992) Jatropha curcas: A multipurpose species for problematic sites. Washington DC: The World Bank.
- Kumar, A., Sharma, S., An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas): A review. *Industrial Crop Production*. (2008), doi:10.1016/j.indcrop. 2008.01.001
- Openshaw K. (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. *Biomass and Bioenergy; 19: 1-15.*



