

IBIS-AMI Generation

Russ Kramer IC Design Expert Technical Consultant

Agenda

- •Background
- •AMI Model Generation Barriers
- Automated AMI Model-generation flow
- •Benefits of Automated AMI flow
- IBIS-AMI model ADS
- •PAM 4 applications at 28 and 56 GB/s (DesignCon 2015)

Why You Can't Use SPICE For Multigigabit/s SERDES

- Circuitry is too complex
- 10's k transistors in the Design space is too big
 - Tx settings × Channel design × Rx setting
 - = Thousands of simulations
 - ic block

Sub-gigabit/s yesterday

Multigigabit/s today

Altera's Adaptive Equalizer

Source: Altera/Agilent joint webcast

IBIS: Input/output Buffer Information **Specification**

 IBIS Open Forum is an organization developing industry standards

PSU SI Conference Page 4

2015

- http://www.eda-stds.org/ibis/
- IBIS 5.0 ratified August 2008 adds an Algorithmic Modeling Interface (AMI) flow as an alternate to the traditional flow **IBIS Open Forum Minutes**

Meeting Date: February 3, 2011 Meeting Location: DesignCon IBIS Summit, Santa Clara, CA, US				
VOTING MEMBERS AND 2011 PARTICIPANTS				
Agilent	Radek Biernacki* Eangvi Rao			

(Nam Nouven)

AMD Keysight supports IBIS:

- Two Keysight engineers serve on IBIS Open Forum
- SystemVue AMI Modeling Kit for AMI model builders (typically IC vendors)
- Channel Simulator in ADS Transient Convolution for model users (typically OEMs)

What Does IBIS AMI Flow Offer? PSU SI Conference 2015 Page 5

- Portability & IP Protection: One IC model runs in many EDA tools, without the need for non-portable, proprietary encryption keys
- Interoperability: IC Vendor A←→IC Vendor B
- Performance: Ultralow BER contours in seconds not days
- Flexibility:
 - Simulator has statistical and bit-by-bit ("time domain") modes
 - Models can have LTI and/or NLTV algorithms
 - IC vendor can expose arbitrary model-parameters

KEYSIGHT

Optimization:

Simulator can sweep model-specific parameter quickly

...OK, But What's the Catch?

- Must use a channel simulator, not transient simulator (SPICE)
 - ...although channel simulator can call other simulators (transient, EM) for generalized channel characterization
- In version 5.0, channel must be linear and time invariant (LTI)
 - ...although this restriction is being lifted in a future version to accommodate re-drivers, re-timers etc. (e.g. BIRD 133)
- Non-linear time varying Tx and Rx must be expressed as compiled C code with a specific API
- *.dll or *.so is OS-specific
- Fixed topology
 - ...although channel can be made of any arbitrary lumped or distributed elements (if LTI)
- Patching machine code into simulator, not parsing lang.

PSU SI Conference 2015 Page 6

What Do the Two New Files Represent?

AMI Model Generation Barriers

#1 AMI modeling barrier *Model Generation Time*

AMI Modeling suppose to Speed-up System Design Cycle, BUT, Model-generation takes Significant Time & Resources

....System Vendors have to wait a LONG time before accurate AMI models become available

Note: Vendors with NO experience in AMI modeling are spending <u>6-12+ months</u> to come up with first-generation models

Models come very late in Design Cycle \rightarrow used only for Validation, NOT Design

Typical Signal Integrity Engineers are NOT programmers

....they are having "Nightmares" in trying to develop AMI models

- Cryptic Matlab/C++ code passed from System-Architectures \rightarrow AMI Modeler (if lucky)
- Challenge to Convert Algorithm design Code \rightarrow AMI format

Typical AMI model generation flow...

Automated AMI model generation flow...

ESL flow for Automated AMI Modeling

Electronic System Level (ESL) design and verification is an emerging electronic design methodology that focuses on the *higher abstraction* level concerns first and foremost.

ESL flow facilitates utilization of appropriate abstractions in order to <u>increase</u> <u>comprehension about a system</u>, and to enhance the probability of a successful implementation of functionality in a <u>cost-effective</u> manner

Here is an Example of SerDes modeling in SystemVue:

Example 6.0 Gb/s (SATA 3.0)

TX Modeling 6.0 Gb/s (SATA 3.0)

Step-1: Architecture Design of Tx with built-in models

Note: The BlindFFE in the example has 3 implementations: built in C++ model, M code, and compiled M code. Use the manage model list to select the different ones. The example workspace has instructions to load the compiled M code model. See the slides for <u>SV2: C++ Model</u> <u>Builder</u> more information on the compile M code model.

PSU SI Conference 2015 Page 14

TimeReponseFIR Filter enables importing HSpice or measured data

Challenges:

Typical Simulation and Measured Data is not equally time-stepped 1.

2015

ESL flow: TX Modeling Example (2)

Step-2: Customize IP -> Bring in Matlab, mathlang, or C++ Code

RX Modeling 6.0 Gb/s (SATA 3.0)

Step-3: Architecture Design of Rx with built-in models

Note: The CTLE design used here is the one detailed in the EDN article: "<u>Continuous-time equalizers improve high-speed serial links</u>". The CDR in this implementation is simple and provides a useful C++ model template to import a custom C++ CDR code. A second Rx design is provided that implements a more realistic CDR (use manage models list on top-level to select).

PSU SI Conference 2015 Page 17

Results – Displayed in Agilent FlexDCA 6.0 Gb/s (SATA 3.0)

Step-4: Verify design using Agilent FlexDCA

TX Output

After Channel

After CTLE+DFE EQ

Note: FlexDCA Eye and Oscilloscope Modes are included as part of base SystemVue product! Separate installation is required.

PSU SI Conference 2015

Automatically generated .ami and Visual-Studio project

	🔏 IBIS AMI Modeling - Microsoft Visual	Studio						
	<u>File E</u> dit <u>V</u> iew <u>P</u> roject <u>B</u> uild <u>D</u> ebug	<u>T</u> ools Te <u>s</u> t A <u>n</u> a	alyze <u>W</u> indow	Help				
	📳 • 🛅 • 📂 🖬 🕼 🕼 🔺	- (* - 🗐 - 🖪	Debug	▼ Win32	-	1		
Solution Explorer - Solution 'IBIS A • 4 × Solution Explorer - Solution 'IBIS A • 4 × Solution 'IBIS AMI Modeling' (3 projects) Solution 'IBIS AMI Files Header Files Header Files Source Files Source Files ML Files ML Files ReadMe.txt							▼ × 👔	
							Server Explorer X Toolbox Defa Defa	
The visual studio project automatically Solution Explorer Solution Explorer Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float) (Format Value 5.0e-001) (D Image (usage in) (Type Float)								
				IBIS AMI Modeling ami_ctle_6_25_g mi_ctle_dfe_6_25_g x_6_25_ghz Header Files BIS-AMI Files sv_tx_6_25_ghz	(3 projects) hz_tyco hz_tyco hz_tyco Clea Jbis.txt Con	(Reserved Parallelistics) I Solution an Solution th Build figuration Manager	aramete	
KEYSIGHT PSU SI Conference TECHNOLOGIES 2015							Page 20	

Benefits of ESL Design Flow

Automated AMI-Model Generation

- 1. Complete "Automation" of Code-generation and Model Compilation a task that routinely takes months because of its complexity
- 2. Basic building blocks that can used to start model development *FIR/IIR filters, FFE, DFE, CDR etc.*
- 3. Easily customize models to include custom IP *Custom C++ and Matlab*

Validating AMI-Model in ADS Channel Simulator

- 1. Verify generated AMI models in ADS.
- 2. Generated AMI models support all IBIS-5.0 compliant channel simulators.2.

Keysight Education Forum

Simulation and Characterization of PAM-4 signals in 28G and 56G Designs using IBIS-AMI models

Simulation and Characterization of PAM-4 signals in 28G and 56G Designs using IBIS-AMI models

- Overview: Pulse Amplitude Module (PAM-4)
- PAM-4 End-to-End Link Simulation
- PAM-4 TX Characterization
- Summary
- Q&A

PSU SI Conference 2015 Page 24

NRZ (Non-Return-to-Zero) vs. PAM (Pulse Amplitude Modulation)

NRZ (PAM-2)

- 2 amplitude levels
- 1 bit of information in every symbol

- 4 amplitude levels
- 2 bits of information in every symbol
 - ✓ 2x throughput for the same Baud rate

2015

- ✓ 28 GBaud PAM-4 = 56 Gb/s
- Lower SNR, more susceptible to noise
- More complex TX/RX design, higher cost
 PSU SI Conference

Status of Standards using PAM-4

- Implemented
 - IEEE 802.3bj clause 94 (25.78 Gb/s as 13.6 GBaud PAM-4 in 1m backplane)
 - Low adoption rate limited advantages over clause 93 25.78 G NRZ
- Under development/discussion
 - OIF CEI 4.0 (56G-VSR, MR, LR)
 - 28 GBaud using PAM-4
 - Basis for other standards Ethernet, Fiber Channel, Infiniband, ...
 Note 56 GBaud NRZ for Ultra Short Reach applications
 - IEEE 802.3bs
 - PAM-4 Proposals being discussed to support 400 GbE Chip-to-Chip (c2c) and Chip-to-Module (c2m)
 - PAM-4 to work on existing CAUI-4 (100G) infrastructures
 - 64G Fibre Channel

Typical PAM-4 Communication Systems

Transmitter, Channel, Receiver

AMI-based End-to-end Link Simulation

- At 56 Gb/s equalization and clock-data-recovery are indispensable
 - Tx: FFE
 - Rx: CTLE/FFE, DFE, CDR
- Full channel analyses must account for both passive channel characteristics and SerDes functionalities
- AMI behavioral models are provided by IC vendors to model SerDes operations
- AMI successfully brings SerDes vendors' models and EDA tools together
 - Interoperability: AMI defines a common interface between SerDes model and simulator
 - IP protection: SerDes behavior is concealed in model DLL
- AMI has been widely adopted by IC, system and EDA companies

AMI Simulation Flow for NRZ

AMI Modeling for PAM4 Signaling: Tx

- For NRZ, input stimulus to Tx DLL has two levels, representing 1 and 0 bits
- For PAM4, input to Tx DLL needs to have four levels, representing symbols
 3, 1, -1 and -3 (or 3, 2, 1 and 0 in other convention)
- Tx DLL interface is unchanged in PAM4

AMI Modeling for PAM4 Signaling: Rx

- PAM4 Rx symbol decision relies on three slicers
- Slicer reference levels are adjusted adaptively and can vary with time
- Rx DLL needs to provide transient slicer levels (DT, DM and DB) to simulator for SER calculation

Note: models for ADC based Rx need to hypothetically oversample to generate output waveform

AMI Simulation Flow for PAM4

Example

PAM-4 Measurement Challenges

- Clock Recovery (CR) used to track out low-frequency jitter, trigger the scope
 - Real-time oscilloscopes use software CR
 - New SW algorithms required.
 - · Sampling oscilloscopes use hardware CR
 - Existing Keysight HW clock recovery designs work on PAM-4 signals

Noise

- Noise will reduce eye opening and degrade system BER
- Random Noise (RN) from DUT TX will Root Sum Square (RSS) add to intrinsic RN from the scope\
- Slower edge speeds (slew rate, S) exacerbate the issue due to AM-to-PM conversion
 Jitter_{me} = RN_{rms}
- Sampling oscilloscopes offer the lowest noise solution for a given bandwidth (often 5-10x lower than a real-time scope that has equivalent BW)

Impairments that challenge PAM-4 receivers

- Eye Skew

- Electrical Considerations
 - Example: Skew introduced due to misalignment of two NRZ patterns during PAM-4 generation
 - Top and bottom eyes are skewed relative to middle eye
 - Standards to check alignment of middle eye relative to upper and lower eyes

Skew between top/bottom and middle eyes

Optical Considerations

- Eye time skew from linear drive of VCSELs (optical)
 - Upper eyes arrive sooner than lower transitions
 - Will each eye need to be sampled with independent delay? More complex RX design.

Early arrival of upper eyes

PSU SI Conference

Page 35

2015

Other impairments that challenge PAM-4 receivers

- Non-linearity Amplitude compression in lower eyes
 - Non uniform effective SNR across individual eyes

- Receivers sensitive to additional artifacts beyond "traditional" jitter types in NRZ
 - Still learning what impairments cause problems
 - New measurements <u>WILL</u> be defined for Tx Outputs
 - New stress types <u>WILL</u> be defined for Rx Input testing

Other Measurement Considerations

Equalization

- Receiver equalization required to open eyes, allow RX to apply Forward Error Correction (FEC)
- Some combination of:
 - Linear Feedforward Equalizer (FFE/LFE)
 - Continuous Time Linear Equalizer (CTLE)
 - Decision Feedback Equalizer (DFE)

QPRBS13 – Eye Measurements

Quaternary PRBS13 Test Pattern

- Types of EYE-based measurements:
 - Eye Height
 - Eye Width
 - Eye Skew
 - EW and EH likely to be specified at a relatively high probability (e.g. EW @ 1E-6)

• Level – mean, "thickness", and skew at the points of minimum ISI.

Eye Centric Measurements

Level Centric Measurements

PAM-N 86100D DCA-X: Hardware Test Solutions

Electrical and Optical solutions to 32 Gbaud (contact Keysight for 56 Gbaud solutions)

Electrical – Highest Precision

(includes built-in clock recovery and precision timebase) Keysight 86100D DCA-X with 86108B

- Channels: 2
- Bandwidth: 50 GHz
- Jitter: <45 fs rms typ.
- Electrical Clock Recovery integrated HW Clock Recovery works with PAM-N signals up to 32 Gbaud

Note - PAM software works with <u>any</u> DCA module (optical and electrical)

Optical (add Electrical/TDR remote heads) Keysight 86100D DCA-X with 86105D-281

- Channels: Up to 2 optical per module, 8 electrical
- Bandwidth: 34 GHz (optical), 60 GHz (electrical)
- Jitter: < 85 fs rms typ. (with 86100D-PTB)
- N1070A Optical Clock Recovery (external)
 - 32 Gbaud Single Mode
 - 14 Gbaud Multimode
- Electrical Remote Heads
 - N1045A 60 GHz Electrical Only
 - N1055A 50 GHz Electrical with TDR/TDT

PSU SI Conference 2015

Summary (IBIS-AMI)

- AMI Modeling (SystemVue + premium services)
 - **Industry's only** ESL flow for SerDes design space exploration and IBIS AMI model generation
- Verification in ADS lets you integrate IBIS AMI simulation with circuits, layouts, Full wave 3DEM integration and EM Co-simulation (FEM and FDTD) for chip-to-chip link optimization

Summary (PAM-4)

- Several industry groups and standards bodies are using, or are actively considering using, PAM-4 technology
- Switch from NRZ to PAM-4 signaling presents many new design and measurement challenges
- Keysight provides powerful solutions for:
 - PAM-4 End-to-End Link Simulation
 - PAM-4 TX Characterization
 - PAM-4 RX Characterization

