Forensic Analysis of Closed Eyes

Dr. Eric Bogatin, Dean, Teledyne LeCroy Signal Integrity Academy Stephen Mueller, Applications Engineering Manager, Teledyne LeCroy Karthik Radhakrishna, Applications Engineer, Teledyne LeCroy

TELEDYNE LECROY Everywhereyoulook[™]

Dr. Eric Bogatin Director, Teledyne LeCroy Front Range Signal Integrity Laboratory Dean, Teledyne LeCroy Signal Integrity Academy Adjunct Prof, University of Colorado, Boulder, ECEE www.beTheSignal.com

Lesson AGCD-09-51 Forensic Analysis COURSE PSMA: Advanced GigaBit Channel Design Section 09: Advanced Topics With Eric Bogatin, Dean, Teledyne LeCroy Signal Integrity Academy • AGCD-09-51 Forensic Analysis • An efficient design methodology • Forensic Analysis • Scope features and signal features • Clock jitter: random and periodic • Single bit response • Why the S-parameters of the channel tell the real story

	An efficient Decime Methodelen
	An emicient Design Methodology
-	What is Forensic Analysis
-	Five important methods:
	 Know your scope and signal
	 Look at the clock
	 Single bit response
	 Look at the common signal
	 Look at the S-parameters of the channel
-	Good habits
	Make rule #9 your friend!
	 Explore all the usual suspects thru simulation
	 Look at ALL the evidence available
	Know your channel's S-parameters

The Usual Suspects List Pathological problems (can kill the signal by itself): Insertion loss too high > ~ 0.1 dB/in/GHz Stub resonances Mode conversion Channel to channel cross talk Death by a thousand cuts (all of the above and then some) Measurement artifacts Random jitter, Periodic jitter Reflections from discontinuities Cross talk Verification Think of all the <u>consistency tests</u> you can to confirm the root cause THE BEST way of verifying an interconnect problem is to look at the channel S-parameters Sometimes verification may require "hacking" a model for the interconnect and removing the feature in the model to verify this was the root cause TELEDYNE LECROY Teledyne LeCroy Signal Integrity Academy 11

A Special Case: Your eye is closed

- If eye is closed at RX:
 - May be difficult to find equalization settings to open eye
 - (usually only successful for a loss mechanism)
- Need to use other techniques to find root cause
 - Measurement artifacts
 - Clock jitter analysis (periodic and random)
 - Single bit response (reflections)
 - Common signal response (mode conversion)
- THE BEST way of identifying interconnect related root causes is
 - Look at the S-parameters!

TELEDYNE LECROY Everywhereyoulook

Teledyne LeCroy Signal Integrity Academy

If You Know What To Expect, You Will Be Dismayed, Shocked And Surprised at what is in Some Channel Models!

Strategy for Evaluating an S-parameter Channel Model

- Rule #9 is your best friend
- Look at ALL the data:
 - SE in the freq domain
 - SE in the time domain
 - Diff in the freq domain
 - Diff in the time domain
- Are the measurements reasonable?
 - Perform the obvious consistency tests of the data
- Is the interconnect reasonable?
 - Look at the important figures of merit of the channel
- Look for the usual suspects

TELEDYNE LECROY

"The spec is -13 dB at 4 GHz. We simulated -12 dB for the channel. We measured -17 dB. What's wrong with our channel?"

The 21 pc	pint S-parameter check list for 4-ports
1. C	open in notepad++: what is the freq start, freq step, max freq
2. V	/hat is the reference port impedance
3. V	/hat is the port assignment? Is S21 and S43 an insertion loss?
4. F	requency domain: is S11 large negative dB and S21 0 dB at low freq?
5. F	requency domain: estimate the magnitude of S21- is it close to 0.1 dB/in/GHz?
6.	Is the phase of S21 decreasing with frequency?
7.	Is the peak in S11 correlated with the dip in S21?
8.	How much coupling is there in S31, S41? Is this expected?
9.	How much asymmetry is there in the magnitude and phase of S21 and S43?
10.	In the time domain, look at S11, S22, S33, S44- are the magnitudes expected? End to end, line to line symmetry?
11.	In the time domain, is NEXT from end to end symmetric? S31 and S42
12.	Where does coupling occur: In time domain, S31 and S11, and S42 and S22
13.	Measure the TDT of S21 and S43. Is the TD what is expected? How much time delay skew is there?
14.	In the time domain, how does SDD21, SDD11, compared with S21 and S11? Is this consistent with the coupling?
15.	In the time domain, how symmetric are SDD11 and SDD22 and SCC11 and SCC22?
16.	How much SCD11 and SCD21 is there?
17.	Where is the source of the SCD11, viewed in the time domain, compared with SDD11?
18.	The three amigos: Passivity: S11, S22, S21,
19.	The three amigos: Reciprocity: S21 = S12
20.	The three amigos: Causality: TDT: S21, S43, and S11, S21 in polar plot- clockwise rotation
21.	Compare the TDR of the fixture file you are de-embedding with the actual fixture attached to the DUT
TELEDYNE LECROY Everywhereyoulook [*]	Teledyne LeCroy Signal Integrity Acaderon

