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Motivation: Global IoT and Consumer Electronics

• Around 29 billion connected devices are forecast 
by 2022, of which around 18 billion will be related 
to IoT [1].

• 70% of wide-area IoT devices will use cellular 
technology in 2022 [1].

• The IoT in consumer electronics industry globally 
is expected to expand up to USD $124 billion 
while growing at CAGR 24.16 percent through 
the forecast period from 2017 to 2023 [2].

• [1] The connected future, https://www.ericsson.com/en/mobility-report/internet-of-things-forecast

• [2] Market research future, link https://www.marketresearchfuture.com/reports/iot-consumer-electronics-market-997

• Figure from https://towardsdatascience.com/iot-machine-learning-is-going-to-change-the-world-7c4e0cd7ac32

https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.marketresearchfuture.com/reports/iot-consumer-electronics-market-997
https://towardsdatascience.com/iot-machine-learning-is-going-to-change-the-world-7c4e0cd7ac32


Motivation: Global IoT and Consumer Electronics

Gateways Cloud

Devices

• The IoT has three components at the top level, namely, devices, gateways, and cloud. 

• The devices such as smartphones, wearable devices, smart TVs, kitchen appliances directly 
interact with the physical world, convert valuable information from the users into digital data, 
and generate massive amount of data.  

• The massive amount of data are filtered and analyzed, providing visibility on users,  products,  
services, and applications, etc. 



Motivation: Incorporate the Power of ML into IoT

• Machine learning has become a robust analytical 
tool for vast amount of data generated by IoT 
devices.

• The incorporation of ML into IoT enables an 
efficient way of wring visionary insights from 
data, leading to the new areas including 
self-driving cars, speech/facial image 
recognition, natural language processing, 
active web search, etc. 

• Google Cloud IoT Edge which extends Google’s 
powerful data processing and machine learning 
to billions of edge devices, such as robotic arms, 
wind turbines, and oil rigs, so they can act on the 
data from their sensors in real time and predict 
outcomes locally.



Machine Learning and Hardware Design

Data centers

• To store the massive amounts of data, 
massive-scale data centers are built 
with petabytes or even exabytes of 
storage, hosting ~100,000 servers.
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Machine Learning and Hardware Design

To process the massive amounts of data,

●CPU and GPU clusters,

●Transistor scaling (Moore’s Law), power 
limitation (constant power density, Dennard 
scaling), and parallelism limitation (number 
of processors per chip, Amdahl’s law)

●Domain-specific hardware including 
Google’s Tensor Processing Unit (TPU) 
deployed in 2015.
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Machine Learning and Hardware Design
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Neural Network Size Grows with Hardware Advancement



Can Neural Networks be Applied in Hardware Design?
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Mark Hayter, Plenary Talk,  2018 IEEE EMC Symposium, Singapore

Schematic Layout



Case Study: Optimization for Decoupling Capacitor Placement
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● An iterative optimization for decoupling capacitor placement on a power 

delivery network (PDN) is developed based on Genetic Algorithm (GA) and 

Artificial Neural Network (ANN). 

● The ANN is first trained by an appropriate set of results obtained by a 

commercial simulator.

● Once the ANN is ready, it is used within an iterative GA process to place a 

minimum number of decoupling capacitors for minimizing the differences 

between the input impedance at one or more location, and the required target 

impedance. 
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Collaboration with UAq EMC Laboratory through Google Faculty Research 

Award (2018):

• Proposed architecture of the ANN for placement optimization

• Basic structure of the GA 

• Structure and the electrical properties of the PDN test vehicle

• Results of the optimization processes

Case Study: Optimization for Decoupling Capacitor Placement
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• The final architecture consists on 3 hidden layer (width of 2, 30 and 2, 

respectively)

• The output layer has size of 361 :  the values of Zin(f) at the 361 frequency points of 

the spectrum

Input: decaps value and location Output: input impedance

Case Study: Optimization for Decoupling Capacitor Placement
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• In order to speed up the generation of the 

TS, a configuration matrix is built. It will be 

used as input to compute the frequency 

spectrum of the Zin(f) at the four ports Pi

• The TS should be not only representative of 

the most significant configurations of the 

actual working space, but should also be 

matched with the iterative nature of the GA.

• In the TS there are configurations with 1 to 10 

decaps at the time. 

Training Set
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• Generalization:

• A limit of the ANN is its reduced capability 

to generalize the outputs for inputs that 

are outside the boundaries of the input 

configurations used in the TS.

• To overcome this limitation, the TS also includes 

some “extreme” input configurations as:

• Bare board (no decoupling capacitors at 

all)

• All decaps of each of the type considered
TS for one of the four ports (P1)

Training Set
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• Reserve part of the data set for validation 

purpose.

• Compare the NN prediction to the results 

obtained using high-fidelity simulation. 

Validation

Example of validation



ANN

GA

Global ANN-GA Architecture



Basic Structure of the GA
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•  The GA iteratively places one decap at 

each optimization run, such that when the 

exit condition from the algorithm is met, a 

minimum number of decap is obtained.

• The GA is based on a binary encoding of 

the chromosome composed by two 

variables: (1) decap position and (2) decap 

value
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• Main features of the implemented GA:

• The binary coding is able to better randomize the 

generation of new chromosomes

• The twin removal avoids any redundancy in the 

creation of new chromosomes within a given 

population

• The global cost function is the sum of the cost functions 

associated to the Nports (= 4) for which the PDN 

impedance should be optimized.

Basic Structure of the GA
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Cost Function of GA
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Tests run on the virtual model of the PDN

Results of the Optimization
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Best Zin for the 4 ports at the end of the optimization process

Results of the Optimization
Pop: 10 chrom 
# gen: 10
fmax: 1 GHz
iter: 10
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Pop: 10 chrom
# gen: 10
fmax: 1 GHz
iter: 10

Results of the Optimization

• The decaps are not clustered 
around any specific port

• The cost function drops quickly, 
evenly and fast up to a very 
small value



The Structure and the Electrical Properties of the PDN Test Vehicle

Top view,
decaps positions grid 

and ports

Stack-up



The Structure and the Electrical Properties of the PDN Test Vehicle

Decap locations in the 
real board

Z
in

 at Port 3:
• from ANN-GA
• from measurement
• from simulation



Case Study: PDN Impedance Prediction
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Collaboration with EMC Laboratory Missouri S&T through Google Faculty 

Research Award (2020):

● Deep learning to predict the PDN impedance



Deep learning to predict the PDN impedance given any: board shape, stack-up, IC location, 
and decap placement

Case Study: PDN Impedance Prediction



Convolutional neural network (CNN) structure:

• Training: 1.3M board 
• Testing: 10K board
• Training time: 80 hours (1 NVIDIA Tesla K80 GPU)

Case Study: PDN Impedance Prediction



Case Study: PDN Impedance Prediction

Methods Case #1 Case #2
Full-wave 35 min 40 min

BEM 10 s 30 s
DNN 0.1 s 0.1 s



Many boards

Train

New board

Decap solution GA
Finetune

Deep learning to optimize Decap placement given any: board shape, stack-up, IC location, 
and # of decaps

Two step approach: trained network + fine tune (GA)

Use the predicted solution by the DRL as a seeded solution of the GA

Case Study: Application of PDN Impedance Prediction



Case Study: ML in High-Speed Channel Modeling
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Eye-Diagram Metrics Prediction

• Linear Regression

• Support Vector Regression

• Neural Network

Eye-Diagram Generation (transient waveform)

• Recurrent Neural Network

• With LSTM unit and GRU



Case Study: ML in High-Speed Channel Modeling
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Eye Height

Eye Width

Bit Period



Case Study: ML in High-Speed Channel Modeling
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ML in Eye-Diagram Metrics Prediction

Simulation techniques in characterizing high-speed channels
•Electromagnetics solvers
•Eye-diagram generations
Computationally intensive

•Domain decomposition, parallel computing, fast frequency sweep, statistical eye
Utilize the large amount of data made available in a previous design or at an earlier design 
stage to improve efficiency
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Transmitter Interconnect Receiver

Input Parameters • Pre-emphasis • Trace With
• Spacing
• Substrate Thickness
• Loss Tangent
• Dielectric Constant

• Equalization



ML-Based Channel Model
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Linear Regression
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Support Vector Regression
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Support Vector Regression
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Prediction Accuracy: SVR
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• SVR with Gaussian Kernel is 
trained and used to predict the 
eye height. 

• The training, validation, and test 
sets contain 717, 48, and 476 
examples.

• The maximum number of 
iterations is set to 4000. 



Impact from Kernels

•SVR with Gaussian kernel well addresses the 
nonlinearity.

•Poly and linear SVR cannot handle the 
nonlinearity in the eye-diagram-metrics 
prediction.

•Polynomial kernel has degrees of three.
•Therefore, it is critical to select an appropriate 
kernel in order for SVR to accurately model 
the high-speed channel.
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DNN Regression
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Feedforward NN Single Neuron



DNN Regression
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DNN Regression
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Prediction Accuracy: DNN Regression
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• A DNN trained to predict the eye 
height. 

• The training, validation, and test 
sets contain 717, 48, and 476 
examples.

• The DNN has three hidden layers 
of 100, 300, and 200 nodes, 
respectively. 

• The learning rate is chosen as 0.01 
and the batch size is 25.

•  The maximum number of 
iterations is set to 4000. 



Nonlinearity

•The predicted eye heights by linear 
regression deviate significantly from 
the truth.

•Both SVR and DNN regression achieve 
excellent accuracy in eye-height 
prediction in the presence of 
nonlinearities.
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Prediction Accuracy: DNN Regression
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Prediction Accuracy: SVR
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Case Study: Eye Diagram Generation

In order to generate eye diagrams, transient 
waveforms are first obtained from a circuit 
simulation and then overlaid.
Generating eye diagrams by using circuit 
simulator can be very computationally 
expensive, especially with nonlinear 
components. 
There are multiple Newton-like iterations 
involved at every time step when a SPICE 
simulator handles nonlinearities.  

48
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Recurrent Neural Network
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RNN 
Unit

{ht-1} {ht}

{xt}

Unfortunately, as the span of the temporal dependencies increases, the gradients tend to 
vanish or explode. 



RNN with Long Short-Term Memory (LSTM) Unit
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LSTM utilizes a more sophisticated activation 
achieved by gating signals to resolve this issue
• Input gate

• Forget gate

• Output gate
. 

LSTM 
Unit

{ct-1}

{ht}

{xt}

{ct}

{ht-1}



Eye Diagram Generation

•A high-speed channel consists of transmitter, 
receiver, and interconnect model.

•Simulate the voltage at transmitter and 
receiver with a circuit simulator at a total 
number of N time steps.

•Divide the voltage at N time steps into three 
subsets, namely, the training set,  the 
validation set, and the test set.

•Train a RNN model with the training set that 
can predict the transient voltage at both the 
transmitter and receiver ends on the unseen 
test set.
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Tx Rx
Channel



Predicted Voltage on Receiver End
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• In this example, a stack 
of four LSTM cells of 20 
hidden units is used. 

• The optimization 
method used is Adam 
with 0.3 dropout 
regularization. 

• The time steps for 
training is 11,000 and the 
model converges in 48 
epochs.

• Accurate predictions are 
achieved on unseen 
sequence as shown in 
the Figure.



Predicted Voltage on Transmitter End
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• In this example, a stack 
of four LSTM cells of 20 
hidden units is used. 

• The optimization 
method used is Adam 
with 0.3 dropout 
regularization. 

• The time steps for 
training is 11,000 and the 
model converges in 48 
epochs.

• Accurate predictions are 
achieved on unseen 
sequence as shown in 
the Figure.
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Prediction Accuracy

RNN LSTM 
network



Eye Diagram Generation with a PAM4 Example

55

Circuit Simulator LSTM 
Network

T. Nguyen, T. Lu, K. Wu, J. Schutt-Aine,  “Transient simulations of high-speed channels with recurrent neural network,” in IEEE 
Transactions on Computer Aided Design of Integrated Circuits and Systems.



Conclusion

• Propose using machine learning methods to SI and PI including Decap placement, 

PDN impedance prediction, eye-diagram metrics predictions, and eye-diagram 

generation.

• With neural network models, the computation efficiency is significantly improved as 

no complex simulation is required.

• The neural network models make predictions through inference and it requires no 

substantial domain knowledge. 
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